国际眼科纵览 ›› 2024, Vol. 48 ›› Issue (2): 109-116.doi: 10.3760/ cma.j.issn.1673-5803.2024.02.006

• 综述 • 上一篇    下一篇

特发性黄斑裂孔术后视力预测的研究进展

林彦君 陈倩茵 张静琳   

  1. 暨南大学附属爱尔眼科医院,广州 510071
  • 收稿日期:2023-10-21 出版日期:2024-04-22 发布日期:2024-04-22
  • 通讯作者: 张静琳,Email:zhjinglin@126.com
  • 基金资助:
     广州市科技计划项目(202201020075);爱尔眼科医院集团科研基金项目(AF2101D5)

Research progress in predicting postoperative visual acuity of idiopathic macular hole

Lin Yanjun, Chen Qianyin, Zhang Jinglin   

  1. Aier Eye Hospital of Jinan University, Guangzhou 510071, China
  • Received:2023-10-21 Online:2024-04-22 Published:2024-04-22
  • Contact: Zhang Jinglin, Email: zhjinglin@126.com
  • Supported by:
     Guangzhou Science and Technology Plan Project(202201020075);Aier Eye Hospital Group Research Fund Project (AF2101D5)

摘要: 特发性黄斑裂孔可通过睫状体平坦部玻璃体切除联合内界膜剥离治疗,实现裂孔解剖上的闭合,但术后视功能恢复主要取决于黄斑功能,而视力是评估黄斑功能最常用的指标,受多因素影响。术前症状持续时间越短、最佳矫正视力越好、裂孔越小、视网膜外层结构以及视网膜血管状态越完整,术后视力改善越佳。近年来,人工智能也逐渐被用于预测特发性黄斑裂孔术后视力,自动识别术前的影像学资料及相关临床特征所训练出来的模型为临床医生选择手术方案、了解患者术后恢复情况提供依据。 (国际眼科纵览,2024, 48:109-116)

关键词: 特发性黄斑裂孔, 深度学习, 视力

Abstract: Idiopathic macular hole (IMH) can often be successfully anatomically closed through a  pars plana vitrectomy combined with internal limiting membrane peeling. However,  the restoration of visual function mainly depends on macular function. The visual acuity is the most commonly used indicator to evaluating macular function and is influenced by multiple factors. The shorter the duration of preoperative symptoms, the better the best-corrected visual acuity, the smaller the tear size, the more complete the outer structure of retinal and the state of retinal blood vessels, the better the postoperative visual improvement. In recent years, artificial intelligence has also been gradually used to predict postoperative visual acuity of IMH, the models trained on preoperative imaging data and relevant clinical features by automatic recognition provide the basis for clinical decision-making and understanding postoperative recovery of patients. (Int Rev Ophthalmol, 2024, 48: 109-116)

Key words: idiopathic macular hole, deep learning, visual acuity