国际眼科纵览 ›› 2024, Vol. 48 ›› Issue (6): 426-432.

• 综述 • 上一篇    下一篇

低强度红光治疗调节眼轴增长的机制

王喻墨1 孙洪岩1, 2  林鸿展1  杨明明1, 2   

  1. 1暨南大学第二临床医学院,深圳 518020;2深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)眼科,深圳 518020
  • 收稿日期:2024-07-03 出版日期:2024-12-22 发布日期:2024-12-06
  • 通讯作者: 杨明明,Email:ming4622@163.com
  • 基金资助:
    深圳市自然科学基金(JCYJ20210324113808023);深圳市科技计划项目基础研究重点项目(JCYJ20220818102603007)

Mechanism of low-intensity red light therapy in regulating axial elongation

Wang Yumo1, Sun Hongyan1, 2, Lin Hongzhan1, Yang Mingming1, 2   

  1. 1 The Second Clinical Medical College, Jinan University, Shenzhen 518020, China;2 Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical College of Jinan University, the First Affilinted Hospital of Southern University of Science and Technology), Shenzhen 518020, China
  • Received:2024-07-03 Online:2024-12-22 Published:2024-12-06
  • Contact: Yang Mingming, Email: ming4622@163.com
  • Supported by:
    General Project of Shenzhen Natural Science Foundation (JCYJ2021032411380 8023); Key Basic Research Program of Shenzhen Science and Technology Program (JCYJ2022081810 2603007)

摘要: 近视是公共卫生领域的重要问题。低强度红光治疗以其非侵入性的方式,已被证实可有效延缓眼轴增长,但其机制尚不明确。低强度红光治疗基于特定分子吸收光子并响应光信号的原理,导致分子电子激发态改变,暂时性地改变其结构和功能,实现高特异性和靶向的生物调节。眼轴长度的调节涉及复杂的级联反应,起始于视网膜并影响巩膜。光暴露与眼轴增长密切相关。研究表明,低强度红光引起的视觉刺激由视网膜神经元接收并产生信号经视网膜色素上皮和脉络膜转导至巩膜,引起神经递质释放、脉络膜血流改变和巩膜重塑。本文综述了低强度红光治疗与眼轴调节的关系以及低强度红光延缓眼轴增长的相关机制。(国际眼科纵览,2024, 48:426-432

关键词: 低强度红光, 近视, 眼轴增长

Abstract: Myopia has become an urgent problem in global public health. Low-intensity red light therapy has been shown to be effective in delaying axial elongation in a non-invasive manner, but its mechanism remains unclear. Low-intensity red light therapy is based on the principle that specific molecules absorb photons and respond to light signals, resulting in changes in the electronic excited state of molecules, temporarily changing their structure and function, and achieving highly specific and targeted biological regulation. The regulation of axial length involves a complex cascade of reactions that begins in the retina and affects the sclera. Light exposure is closely related to axial elongation. Previous studies have indicated that the visual stimulation elicited by low-intensity red light is received by retinal neurons and generates signals, which are transduced through the retinal pigment epithelium and choroid to the sclera, leading to the release of neurotransmitters, alterations in choroidal blood flow, and scleral remodeling. This review explores the relationship between low-intensity red light therapy and axial regulation, investigating the mechanisms by which low-intensity red light slows down axial growth. (Int Rev Ophthalmol, 2024, 48:  426-432)

Key words: low intensity red light, myopia, axial elongation