国际眼科纵览 ›› 2025, Vol. 49 ›› Issue (4): 247-252.doi: 10. 3760/cma.j.cn115500-20250506-25402

• 综述 • 上一篇    下一篇

晚期青光眼的视神经监测指标研究进展

莫湘晋爱霞樊宁   

  1. 1暨南大学第二临床医学院,深圳 518040;2深圳市眼科医院 暨南大学第二临床医学院,深圳 518040
  • 收稿日期:2025-05-06 出版日期:2025-08-22 发布日期:2025-08-12
  • 通讯作者: 樊宁,Email:fanning@smu.edu.cn E-mail:fanning@smu.edu.cn
  • 基金资助:
    国家自然科学基金(82271087);深圳市科技计划(KCXFZ20230731093359004)

Research progress in optic nerve monitoring indicators for advanced glaucoma

Mo Xiang1, Jin Aixia2, Fan Ning2   

  1. 1 The Second Clinical Medical College, Jinan University, Shenzhen 518040, China; 2 Shenzhen Eye Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518040, China
  • Received:2025-05-06 Online:2025-08-22 Published:2025-08-12
  • Contact: Fan Ning, Email:fanning@smu.edu.cn E-mail:fanning@smu.edu.cn
  • Supported by:
    National Natural Science Foundation of China (82271087); Shenzhen Science and Technology Program (KCXFZ20230731093359004)

摘要: 晚期青光眼以严重视野缺损和视力下降为主要特征,其精准的病情动态监测对延缓视力丧失至关重要。传统检测手段,如相干光断层扫描及视野检查,在晚期患者因“地板效应”或患者配合度差导致可靠性降低。近年来,影像学技术(如相干光断层扫描血管成像)与功能检测技术(如全视野视网膜电图、中央10度视野检查)的进步为晚期青光眼的病情监测提供了新手段,尤其是人工智能技术(如生成对抗网络、卷积神经网络)的引入,显著提高了检测的精度与效率。

关键词: 晚期青光眼, 视神经, 视网膜神经纤维层, 视网膜血管密度, 人工智能

Abstract: Advanced glaucoma is characterized by severe visual field defects and deterioration of visual acuity. Precise dynamic monitoring of disease progression is crucial for delaying vision loss. Conventional diagnostic modalities, including optical coherence tomography and perimetry, exhibit reduced reliability in advanced-stage patients due to the "floor effect" and poor patient compliance.Recent advances in imaging technologies (e.g., optical coherence tomography angiography) and functional testing techniques (e.g., full-field electroretinography, microperimetry) have provided new approaches for monitoring advanced glaucoma. Particularly, the integration of artificial intelligence technologies (e.g., generative adversarial networks, convolutional neural networks) has significantly enhanced the accuracy and efficiency of detection.

Key words: Advanced glaucoma, Optic nerve, Retinal nerve fiber layer, Retinal vascular density, Artificial intelligence