眼科 ›› 2023, Vol. 32 ›› Issue (2): 84-88.doi: 10.13281/j.cnki.issn.1004-4469.2023.02.002

• 述评 • 上一篇    下一篇

生物节律对眼屈光发育和近视发生发展的影响

李聪颖   黄瑛   李仕明   

  1. 首都医科大学附属北京同仁医院 北京同仁眼科中心 眼科学与视觉科学北京市重点实验室 100730
  • 收稿日期:2023-03-16 出版日期:2023-03-25 发布日期:2023-03-31
  • 通讯作者: 李仕明,Email:lishiming81@163.com
  • 基金资助:
    国家自然科学基金(82071000);北京市自然科学基金杰出青年科学基金(JQ20029);首都卫生发展科研专项(2020-2-1081)

The influence of biorhythms on refractive development and the development of myopia

Li Congying, Huang Ying, Li Shiming   

  1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
  • Received:2023-03-16 Online:2023-03-25 Published:2023-03-31
  • Contact: Li Shiming, Email: lishiming81@163.com
  • Supported by:
    National Natural Science Foundation of China (82071000); Beijing Science Foundation for Distinguished Young Scholars (JQ20029); Capital Health Research and Development of Special Grant (2020-2-1081)

摘要: 节律是自然界的重要基本特征之一,它能使生物更好地适应环境并通过适配的相位关系保持生命过程的协调统一,时令变更、阴晴圆缺和昼夜交替都属于节律。生物节律是生命现象中的规律性变化,在器官发育、生理调节等过程中起着重要作用。在外界节律的变化中,光线发挥着重要作用,光线自身的变化也存在着节律。眼球是生物感受光线最重要的器官,其发育及内部结构受外界与自身节律的调控。光照信号被眼球内在光敏性视网膜神经节细胞投射到“主生物钟”视交叉上核(SCN),形成日节律光协同化。当异常光照导致生物节律失调时,机体可能通过调节视网膜生物钟和SCN之间的同步化,改变眼球发育相关节律性激素如多巴胺及褪黑素的平衡状态,扰乱眼球生长发育,产生屈光状态异常。本文就近年来生物节律对眼球屈光发育和近视的影响予以分析,为预防和治疗近视提供新的思路。(眼科,2023,32: 84-88)

关键词: 生物节律, 屈光发育, 近视, 光线

Abstract: Rhythm is one of the essential basic features of nature, which enables organisms to better adapt to the environment and maintain the coordination of life processes through the appropriate phase relationship, seasonal changes, cloudy and sunny days, and night alternation are all rhythms. Biological rhythm is a regular change in the phenomenon of life, which plays an important role in the process of organ development and physiological regulation. In the change of external rhythm, light plays an important role, and there is also a rhythm in the change of light itself. The eye is the most important organ of natural light perception, and external and internal rhythms regulate its development and internal structure. Light signals are projected to the suprachiasmatic nucleus (SCN), the "master biological clock", by the intrinsically photosensitive retinal ganglion cells of the eye, resulting in daily rhythmic photo synchronization. When abnormal light exposure leads to biorhythmic dysregulation, the body may alter the balance of developmental hormones such as dopamine and melatonin by regulating the synchronization between the retinal biological clock and the SCN, disrupting eye growth and development and producing abnormal refractive status. In this paper, we analyze the effects of biorhythms on refractive development and myopia in recent studies to provide new ideas for the prevention and treatment of myopia. (Ophthalmol CHN, 2023, 32: 84-88)

Key words: biological rhythm, refractive development, myopia, light