眼科 ›› 2013, Vol. 22 ›› Issue (6): 374-377.

• 论著 • 上一篇    下一篇

高分辨率 OCT测量神经节细胞-内丛状层厚度在青光眼早期诊断中的作用

霍妍佼  郭彦  洪洁  王怀洲  王宁利   

  1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2013-08-21 出版日期:2013-11-25 发布日期:2013-12-10
  • 通讯作者: 王宁利,Email: wningli@vip.163.com E-mail:wningli@vip.163.com

Diagnostic accuracy of ganglion cell-inner plexiform layer measured through cirrus high-definition optical coherence tomography in early glaucoma

HUO Yan-jiao, GUO Yan, HONG Jie, WANG Huai-zhou, WANG Ning-li   

  1. Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Bejing  Key Laboratory of Ophthalmology and Visual Science, Beijng 100730, China
  • Received:2013-08-21 Online:2013-11-25 Published:2013-12-10
  • Contact: WANG Ning-li, Email: wningli@vip.163.com E-mail:wningli@vip.163.com

摘要: 目的 探讨高分辨率相干光断层扫描(Cirrus-HD OCT)测量黄斑神经节细胞-内丛状层(GCIPL)厚度参数在青光眼早期诊断中的作用。设计 诊断技术评价。研究对象30例早期青光眼患者和56例正常对照者。方法 应用Cirrus-HD OCT进行黄斑区及其分区域GCIPL和视盘周围视网膜神经纤维层(RNFL)厚度参数测量。用受试者工作特性曲线下面积(AUC)来评价各参数区分正常眼与青光眼的能力。主要指标 GCIPL与RNFL的厚度和两者的AUC值。结果 正常人和早期青光眼GCIPL和RNFL各参数测量值之间比较,差异均有统计学意义(P均<0.01)。正常人和早期青光眼患者的平均GCIPL厚度分别为(85.43±5.27)μm和(69.30±7.71)μm;平均RNFL厚度分别为(100.98±7.98)μm和(78.80±10.38)μm(P<0.001)。GCIPL参数中诊断效能最高者是最小值(minimum)和颞上区域(superotemporal),AUC均为0.985;其他AUC较高的参数依次为平均值(average)(0.971)、下方区域(inferior)(0.941)、颞下区域(superotemporal)(0.934)和鼻上区域(0.907)。视盘周围RNFL参数中诊断效能最高者是平均值(0.990)。结论  Cirrus-HD OCT测得的GCIPL厚度参数与视盘周围RNFL厚度参数类似,具有较好的区分正常人和早期青光眼患者的能力,可作为青光眼早期诊断的有用工具。

关键词: 神经节细胞-内丛状层, 视网膜神经纤维层, 相干光断层扫描, 青光眼/诊断

Abstract: Objective To determine the diagnostic performance of macular ganglion cell-inner plexiform layer (GCIPL) thickness to discriminate early glaucoma form normal eyes. Design Evaluation of diagnostic technology. Participants Early glaucoma patients (30 cases, 30 eyes) and healthy controls (56 cases, 56 eyes). Methods All subjects were underwent macular scanning and peripapillaryretinal nerve fiber layer (RNFL) scanning using the Cirrus high-definition optical coherence (HD-OCT) ganglion cell analysis (GCA) algorithm (Carl Zeiss Meditec, Dublin, CA). The GCA algorithm was used to detect the macular GCIPL and to measure the thickness of the overall average, minimum, superotemporal, superior, superonasal, inferonasal, inferior, and inferotemporal GCIPL. The area under the receiver operating characteristic curve (AUC) was used to assess the ability to discriminate early glaucomatous eyes form normal eyes of each testing parameter. Main Outcome Measures The thickness of GCIPL and RNFL, and their AUCs. Results There were statistical differences in all measurement parameters (GCIPL and RNFL) between normal and glaucoma patients (all P< 0.01). The average GCIPL thickness of normal and glaucomatous eyes were (85.43 ± 5.27) μm and ( 69.30 ± 7.71) μm, and the average RNFL thickness of normal eyes and glaucomatous eye were (100.98±7.98) μm and (78.80 ± 10.38) μm (P<0.001). The largest AUC of all GCIPL parameters were the minimum and inferotemporal sector (both were 0.985), followed by the average (0.971), inferior sector (0.941), superotemporal sector (0.934), and superonasal sector (0.907). The largest AUC of all RNFL parameters was the average (0.990). Conclusion The macular GCIPL parameter was comparable to the peripapillary RNFL parameter, performs good in discriminating normal and glaucomatous eyes, and GCA algorithm may be a valuable tool for the diagnosis of early glaucoma.

Key words: ganglion cell-inner plexiform layer, retinal nerve fiber layer, optical coherence tomography, glaucoma/diagnosis