眼科 ›› 2024, Vol. 33 ›› Issue (4): 285-289.doi: 10.13281/j.cnki.issn.1004-4469.2024.04.009

• 论著 • 上一篇    下一篇

70岁以上冠心病患者基于人工智能的视网膜血管形态参数研究

  

  1. 张菡1  贾红艳2   凌赛广3   孔令伟4  庄润涛4
  • 收稿日期:2024-06-28 出版日期:2024-07-25 发布日期:2024-07-18
  • 通讯作者: 贾红艳,Email:jhy_1120@163.com
  • 基金资助:
    中央高校基本科研业务费专项资金(2023JBZX020)

Correlation analysis between retinal vascular morphology parameters and 70 years-old or over coronary heart disease based on artificial intelligence

Zhang Han1, Jia Hongyan2, Ling Saiguang3, Kong Lingwei4, Zhuang Runtao4   

  1. 1北京交通大学医院眼科,北京100044;2首都医科大学附属北京同仁医院 北京同仁眼科中心  眼科学与视觉科学北京市重点实验室,北京100730;3依未科技(北京)有限公司,北京 100085;4北京交通大学医院外科,北京 100044
  • Received:2024-06-28 Online:2024-07-25 Published:2024-07-18
  • Contact: Jia Hongyan, Email: jhy_1120@163.com
  • Supported by:
    Fundamental Research Funds for the Central Universities (2023JBZX020)

摘要: 目的 运用人工智能自动分析技术初步分析视网膜血管形态特征参数与70岁以上冠心病的相关性。设计 横断面研究。研究对象 选取2023年1月至2024年1月在北京交通大学医院进行慢病管理的70岁以上冠心病患者471例作为观察组,同期签约建档并排除冠心病的426例年龄、性别匹配的个体作为对照组。方法 收集两组人群的一般资料、空腹血糖(FBG)、低密度脂蛋白胆固醇(LDL-C)化验结果及右眼免散瞳彩色眼底像。使用人工智能自动分析技术测量多维视网膜血管形态参数,观察两组之间差异;采用二元Logistic回归分析视网膜血管形态参数与冠心病的相关性。主要指标 视网膜动脉平均管径、视网膜静脉平均管径、视网膜动脉平均弯曲度、视网膜静脉平均弯曲度、血管平均分支夹角,血管分形维数、血管密度。结果 与对照组比较,观察组吸烟比例较高、身体质量指数(BMI)更高、空腹血糖及LDL-C更高,差异均有统计学意义(P均<0.05)。高血压患者比例、糖尿病患者比例、饮酒比例在两组之间无显著性差异。与对照组相比,观察组患者视网膜动脉平均管径更细(t=29.922,P<0.001),视网膜动脉平均弯曲度更大(t=-2.174,P=0.03),血管分形维数更低(t=2.282,P=0.023)以及血管密度更低(t=4.057,P<0.001)。二元Logistic回归分析结果显示,校正混杂因素后,视网膜动脉平均管径与冠心病独立相关(B=-0.721,P<0.001)。结论 70岁以上冠心病患者的视网膜动脉平均管径更细,且与冠心病独立相关。(眼科,2024,33: 285-289)

关键词: 冠心病, 视网膜血管, 形态学参数, 人工智能

Abstract: Objective To preliminarily analyze the correlation between retinal vascular morphology parameters and 70 years-old or over coronary heart disease using artificial intelligence automated analysis technology. Design Cross-sectional study. Participants 471 70 years-old or over coronary heart disease patients undergoing chronic disease management at Beijing Jiaotong University Hospital from January 2023 to January 2024 were selected as the observation group, and 426 age- and gender-matched individuals who signed up for documentation and were excluded from coronary heart disease during the same period were selected as the control group. Methods General information, fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), and color fundus photography images of the right eye without dilated pupils were collected from both groups. Retinal vascular morphology parameters were measured using artificial intelligence automated analysis technology to observe the differences between the two groups; binary Logistic regression was used to analyze the correlation between retinal vascular morphology parameters and coronary heart disease. Main Outcome Measures Average caliber of retinal artery, average caliber of retinal vein, average retinal artery tortuosity, average retinal vein tortuosity, retinal vascular branching angle, vascular fractal dimension, and retinal vascular density. Results Compared with the control group, patients in the observation group had a higher proportion of smokers, higher BMI, higher FBG and LDL-C (all P<0.05). Age, gender, proportion of patients with hypertension and diabetes mellitus, and proportion of alcohol consumption showed no significant difference between the two groups. Compared with the control group, patients in the observation group had finer average caliber of retinal artery(t=29.922, P<0.001), greater average retinal artery tortuosity(t=-2.174, P=0.03), lower vascular fractal dimension(t=2.282, P=0.023), and lower retinal vascular density(t=4.057, P<0.001). Binary Logistic regression analysis showed that average caliber of retinal artery was independently associated with coronary artery disease after correction for confounders (B=-0.721, P<0.001). Conclusion Compared with the control group, average caliber of retinal artery was finer and independently associated with coronary artery disease in the observation group of 70 years-old or over patients with coronary artery disease. (Ophthalmol CHN, 2024, 33: 285-289)

Key words: coronary heart disease, retinal vessels, morphological parameters, artificial intelligence