眼科 ›› 2024, Vol. 33 ›› Issue (3): 223-225.doi: 10.13281/j.cnki.issn.1004-4469.2024.03.011

• 教学园地 • 上一篇    下一篇

人工智能生成对抗网络在眼科临床教学中的应用初探

魏文斌  董力  张瑞恒  王海燕   

  1. 首都医科大学附属北京同仁医院  北京同仁眼科中心  眼科学与视觉科学北京市重点实验室 医学人工智能研究与验证工信部重点实验室,北京 100730

  • 收稿日期:2024-02-20 出版日期:2024-05-24 发布日期:2024-05-24
  • 通讯作者: 魏文斌,Email:weiwenbintr@163.com
  • 基金资助:
    :国家自然科学基金(82220108017,82141128);首都卫生发展科研专项(首发2020-1-2052);北京市科委科技计划项目(Z201100005520045,Z181100001818003);深圳市“医疗卫生三名工程”项目(SZSM202311018)

Application of generative adversarial network in clinical teaching of ophthalmology

Wei Wenbin, Dong Li, Zhang Ruiheng, Wang Haiyan    

  1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing 100730, China
  • Received:2024-02-20 Online:2024-05-24 Published:2024-05-24
  • Contact: Wei Wenbin, Email: weiwenbintr@163.com
  • Supported by:
    The National Natural Science Foundation of China (82220108017, 82141128); The Capital Health Research and Development of Special (2020-1-2052); Science & Technology Project of Beijing Municipal Science & Technology Commission (Z201100005520045, Z181100001818003); Sanming Project of Medicine in Shenzhen (SZSM202311018)

摘要:  目的 研究不同年资眼科医生能否区分真实眼底照片和生成对抗网络(GAN)生成的眼底照片,以探究GAN是否可应用于眼科临床教学。设计 诊断试验。研究对象 真实眼底照片和图片生成器生成的虚拟眼底照片各70张。方法 随机纳入北京同仁医院眼科医生、眼科学专业学位研究生和非眼科医生20人。使用真实眼底照片对模型进行训练得到一个高质量的图片生成器,随机生成70张虚拟眼底照片并与真实的眼底图片以1:1混合,由各年资眼科医生进行照片真假性辨认。主要指标 医生辨别眼底照片真伪的敏感度、特异度、准确性。结果 20位医生辨别眼底照片真假性平均敏感度为0.578(0.314~0.871),平均特异度为0.471(0.014~0.729),平均准确度为0.524(0.236~0.707)。高年资医生组的准确性与其他组医生之间并无统计学差异(P>0.05)。结论 基于GAN模型生成的虚拟眼底照片具有同真实眼底照片相似的细节特征,未来可用于生成高质量眼底图片辅助眼科教学及基层眼底医生的培训。(眼科,2024, 33:223-225

关键词: 人工智能, 生成对抗网络, 眼科, 教学

Abstract: Objective To investigate whether ophthalmologists with different experience levels can distinguish authentic retinal photographs from those generated by Generative Adversarial Networks (GANs), so as to explore whether GAN can be applied in clinical teaching of ophthalmology. Design Diagnostic test. Participants 70 generated virtual retinal images and 70 real retinal photographs. Methods 20 participants including ophthalmologists, ophthalmology postgraduate students, and non-ophthalmologist physicians from Beijing Tongren Hospital were included in the present study. After training a model using real retinal photographs to create a high-quality image generator. Subsequently, 70 generated virtual retinal photographs are mixed in a 1:1 ratio with real retinal images. The participants, representing various levels of experience in ophthalmology, are then tasked with identifying the authenticity of the retinal photographs. Main Outcome Measures Sensitivity, specificity, and accuracy in distinguishing real and generated retinal images. Results The average sensitivity, specificity and accuracy were 0.578 (range: 0.314~0.871), 0.471 (range: 0.014~0.729), and 0.524 (range: 0.236~0.707) among the participating physicians respectively. There is no statistically significant difference in accuracy between the senior ophthalmologists and other ophthalmologist group (P>0.05). Conclusion Virtual retinal photographs generated by GAN models exhibit detailed features similar to real retinal images. In the future, these models could be utilized for producing high-quality retinal images to assist in ophthalmic education and training for primary care retinal specialists. (Ophthalmol CHN, 2024, 33: 223-225)

Key words:  artificial intelligence, generative adversarial networks, ophthalmology, teaching