眼科 ›› 2021, Vol. 30 ›› Issue (6): 412-420.doi: 10.13281/j.cnki.issn.1004-4469.2021.06.002

• 论著 • 上一篇    下一篇

基于生物信息学分析构建预测葡萄膜黑色素瘤转移风险的基因评分模型

严然1 高新晓1 谢品雪2 朱思泉1   

  1. 1首都医科大学附属北京安贞医院眼科 100029;2北京市心肺血管疾病研究所 100029
  • 收稿日期:2021-09-14 出版日期:2021-11-25 发布日期:2021-12-10
  • 通讯作者: 朱思泉,Email:siquanzhu@qq.com E-mail:siquanzhu@qq.com

Development and validation of a 6-gene signature model for predicting the risk of metastasis in uveal melanoma based on bioinformatic analysis

Yan Ran1, Gao Xinxiao1, Xie Pinxue2, Zhu Siquan1   

  1. 1 Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; 2 Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
  • Received:2021-09-14 Online:2021-11-25 Published:2021-12-10
  • Contact: Zhu Siquan, Email: siquanzhu@qq.com E-mail:siquanzhu@qq.com

摘要: 目的 探索葡萄膜黑色素瘤(uveal melanoma, UM)转移相关分子标志物,构建预测UM转移风险的基因评分模型。设计 病例对照研究和诊断试验。研究对象 癌症基因组(TCGA)公共数据库和基因表达综合(GEO)数据库中获取的UM患者原发肿瘤组织的转录组数据。方法 通过获取公共数据库中UM肿瘤组织的转录组数据,分析转移性UM样本中差异表达基因,联合样本预后和临床信息,构建预测UM转移风险的基因评分模型,并在另外独立数据集中进行验证。分别对GSE21138和GSE44299数据集中转移和非转移原发UM肿瘤组织样本转录组数据的差异基因进行分析,以GSE21138中样本作为训练集,将两数据集中在转移性UM组织中均发生上调或下调的基因纳入Lasso-Cox回归分析,构建预测UM患者无转移生存的预测模型。绘制该模型预测1、3、5年无转移生存的接受者操作特性曲线,并根据最佳评分Cut-off值对UM患者的转移风险进行分组,绘制Kaplan-Meier生存曲线;最后在GSE44299数据集和TCGA数据库的UM样本中验证该模型的预测能力。主要指标 转移性UM组织和非转移性UM组织中的差异表达基因以及构建的基因评分模型对UM患者无转移生存、转移相关死亡、总生存和疾病特异生存的预测价值。 结果 共鉴定出在转移性UM样本中差异表达基因且变化倍数>2的基因共17个,Lasso-Cox回归构建了包含6基因(RIMS2、PTP4A3、HTR2B、HNMT、COBLL1、ID2)的UM患者无转移生存预测模型。该6基因评分模型预测1、3、5年无转移生存的AUC值分别为0.78、0.89、0.85。Kaplan-Meier生存曲线结果显示,6基因评分分层为高危的患者具有较差的无转移生存。且该6基因评分模型在GSE44299数据集和TCGA数据库的样本中亦显示出对患者总生存和疾病特异生存的良好预测价值。结论 构建了基于UM转移相关基因的预后预测模型,该模型对UM患者无转移生存、总生存及疾病特异生存均有较好的预测价值。(眼科,2021, 30: 412-420)

关键词: 葡萄膜黑色素瘤, 肿瘤转移, 生物信息学, Lasso-Cox回归, 疾病特异生存

Abstract: Objective To identify the biomarkers of metastatic uveal melanoma (UM) and develop a predictive model for the risk of metastasis in UM patients. Design Case control study and diagnosis test. Participants The transcriptome data of UM samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Methods To analyze the differentially expressed genes in metastatic UM samples based on the transcriptome data UM samples obtained from the public database. To construct and validate a gene signature for predicting the risk of metastasis according to the differentially expressed genes. The differential expressed genes in metastatic UM tumor tissues were analyzed based on GSE21138 and GSE44299 data sets. The samples in GSE21138 were used as the training set. Lasso-Cox regression analysis was employed to construct a gene signature for predicting metastasis-free survival in UM patients. The receiver operating characteristic curves for predicting 1-, 3- and 5-year metastasis-free survival were generated. The Kaplan-Meier analysis was used to explore the predictive value of prognosis in patients at different risk group. Finally, the predictive value of gene signature is also validated in GSE44299 data set and TCGA database. Main Outcome Measures The differentially expressed genes between metastatic and non-metastatic UM tissues. The predictive value of the constructed gene signature for predicting metastasis-free survival, metastasis related death, overall survival and disease-specific survival in UM patients. Results A total of 17 differentially expressed genes (Fold Change>2) were identified in metastatic UM samples. A 6-gene signature was developed by Lasso-Cox regression analysis for predicting metastasis-free survival including (RIMS2, PTP4A3, HTR2B, HNMT, COBLL1, ID2). The AUC values of 1-, 3- and 5-year metastasis-free survival predicted by the 6-gene signature were 0.78, 0.89 and 0.85, respectively. The results of Kaplan-Meier survival analysis showed that patients in high-risk group based on 6-gene signature risk score had unfavorable metastasis-free survival. The 6-gene signature also showed good predictive value for overall survival and disease-specific survival in the GSE44299 data set and TCGA database. Conclusion A 6-gene signature model based on UM metastasis related genes was developed and validated. The 6-gene signature has good predictive value for metastasis-free survival, overall survival and disease-specific survival in UM patients. (Ophthalmol CHN, 2021, 30: 412-420)

中图分类号: