眼科 ›› 2025, Vol. 34 ›› Issue (3): 232-235.doi: 10.13281/j.cnki.issn.1004-4469.2025.03.010

• 教学园地 • 上一篇    下一篇

人工智能病灶分割系统及其在糖尿病视网膜病变临床教学中的应用初探

董力1  王珊珊1   邓卓2   马岚2   魏文斌1   

  1. 1首都医科大学附属北京同仁医院 北京同仁眼科中心 眼科学与视觉科学北京市重点实验室 医学人工智能研究与验证工信部重点实验室,北京 100730; 2清华大学深圳国际研究生院,深圳518071
  • 收稿日期:2024-11-04 出版日期:2025-05-25 发布日期:2025-05-25
  • 通讯作者: 魏文斌,Email:weiwenbintr@163.com
  • 基金资助:
     国家自然科学基金(82220108017,82141128,82401283);首都卫生发展科研专项(首发2020-1-2052);北京市科委科技计划项目(Z201100005520045,Z181100001818003);深圳市“医疗卫生三名工程”项目(SZSM202311018);北京市教育委员会科研计划项目(KM202410025011);首都医科大学附属北京同仁医院科研种子基金资助项目(2023-YJJ-ZZL-003)

Artificial intelligence-based lesion segmentation system and its preliminary application in clinical teaching of diabetic retinopathy

Dong Li1, Wang Shanshan1, Deng Zhuo2, Ma Lan2, Wei Wenbin1   

  1. 1 Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology & Visual Sciences; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing 100730, China; 2 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
  • Received:2024-11-04 Online:2025-05-25 Published:2025-05-25
  • Contact: Wei Wenbin, Email: weiwenbintr@163.com
  • Supported by:
    National Natural Science Foundation of China (82220108017, 82141128, 82401283); Capital Health Research and Development of Special (2020-1-2052); Science & Technology Project of Beijing Municipal Science & Technology Commission (Z201100005520045, Z181100001818003); Sanming Project of Medicine in Shenzhen (SZSM202311018); R&D Program of Beijing Municipal Education Commission (KM202410025011); Priming scientific research foundation for the junior researcher in Beijing Tongren Hospital, Capital Medical University (2023-YJJ-ZZL-003)

摘要:  目的  建立基于人工智能(artificial intelligence,AI)的糖尿病视网膜病变(diabetic retinopathy,DR)病灶分割系统,将其与传统人工标注的表现进行比较,并探究其在临床教学中的应用。设计 教学研究。研究对象 北京同仁医院10位第一年专业型硕士研究生,以及300张DR彩色眼底照片。方法 建立一套基于AI的眼底病灶分割系统,可识别微血管瘤(microaneurysm,MA)、视网膜出血(hemorrhage,HE)、硬性渗出(hard exudation,EX)和软性渗出(soft exudation,SE)。所有眼底照片均由高年资眼底病专家标注作为金标准,再分别由AI和人工进行标注,比较二者标注水平。分别使用人工模式和AI模式对两组眼科研究生进行教学,比较两组学生考核的正确率。主要指标 DR眼底照片病灶标注准确性(Dice系数),标注每张眼底照片所需时间,学生对病灶识别的准确度。结果 AI和人工标注四种病灶的平均Dice系数为0.845和0.871(P=0.525)。AI平均标注每张眼底照片所需平均时间为1.2秒,明显短于人工标注的1451秒(P<0.001)。使用二者分别进行教学后,学生考核平均正确率为83.5%和82.5%(P=0.790)。结论 AI能准确识别DR病灶,总体水平与人工标注相当且效率极高,可应用于眼科临床教学中。(眼科,2025,34: 232-235)

关键词:  , 人工智能;视网膜;病灶分割;眼科;教学

Abstract:  Objective To establish an artificial intelligence (AI)-based diabetic retinopathy (DR) lesion segmentation system, compare its performance with traditional manual annotation, and explore its application in clinical teaching. Design Educational research study. Participants Ten first-year professional master's students from Beijing Tongren Hospital and 300 colored DR fundus photographs. Methods An AI-based fundus lesion segmentation system was established to identify microaneurysms (MA), hemorrhages (HE), hard exudates (EX), and soft exudates (SE). All fundus photographs were annotated by senior retinal disease experts, serving as the gold standard. Both AI and manual annotations were conducted for comparison. Two groups of ophthalmology students were taught using either the manual or AI method, and their test accuracy was compared. Main Outcome Measures The accuracy of lesion labeling in DR fundus photos (Dice coefficient), the time required to label each fundus photo, and the accuracy of the students' identification of focal lesions. Results The average Dice coefficients of AI and manual labeling were 0.845 and 0.871, respectively (P=0.525). The average time required by AI for each fundus photo was 1.2 seconds, which was significantly shorter than 1451 seconds for manual labeling(P<0.001). After teaching, with the two methods respectively, the average accuracy of students, assessment was 83.5% and 82.5% respectively (P=0.790). Conclusion The AI system exhibits robust performance in segmenting fundus lesions of DR, achieving comparable accuracy to manual annotation with significantly higher efficiency, which proves it can be applied in clinical education. (Ophthalmol CHN, 2025, 34: 232-235)

Key words: artificial intelligence, retina, lesion segmentation, ophthalmology, teaching